The function f (x) is defined by f (x) = (1-x)/(1+x), x not equal to -1. Show that f(f (x)) = x. Hence write down f ^-1 (x).

f(f (x) )= f( (1-x)/(1+x) ) = (1-(1-x)/(1+x))/(1+(1-x)/(1+x))where you replace x by (1-x)/(1+x). Multiply the top and bottom of the fraction by (1+x) to get ((1+x)-(1-x))/((1+x)+(1-x)) which simplifies to 2x/2 = x. Hence you have shown f(f (x)) = x. f^−1 (x) = f(x) = (1−x)/(1+x), this is because f^−1(f(x)) = f( f^−1(x))= x.

Answered by Sarah P. Maths tutor

10245 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I solve a cubic?


How to differentiate y=2x(x-2)^5 to find dy/dx?


Show that the derivative of tan(x) is sec^2(x), where sec(x) is defined as 1/cos(x). [Hint: think of tan(x) as a quotient of two related functions and apply the appropriate identity]


(Follow on from previous question) A curve has equation y= x^2+3x+2. Use your previous results to i) find the vertex of the curve ii) find the equation of the line of symmetry of the curve


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences