If f(x) = sin(2x)/(x^2) find f'(x)

As f(x) is in the form of u(x)/v(x) we can apply the rule that f'(x) = (u'(x)*v(x) - v'(x)*u(x))/(v(x)2), pulled from the C3 formula booklet.
If u(x) = sin(2x) then u'(x) = 2cos(2x).
If v(x) = x2 then v'(x) = 2x.
Hence, f'(x) = ((2cos(2x)*x2) - (sin(2x)*2x))/(x4)
(Will be easier to explain on a whiteboard w/ standard visualisation of functions)

Answered by Leo R. Maths tutor

3205 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

F ind all values of x in the range 0° <= x <= 180° satisfying tan(x+45°)= 8tan(x)


What is the Product Rule?


Simplify: 4log2 (3) + 2log2(5)


Differentiate y^3 + 3y^2 + 5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences