If f(x) = sin(2x)/(x^2) find f'(x)

As f(x) is in the form of u(x)/v(x) we can apply the rule that f'(x) = (u'(x)*v(x) - v'(x)*u(x))/(v(x)2), pulled from the C3 formula booklet.
If u(x) = sin(2x) then u'(x) = 2cos(2x).
If v(x) = x2 then v'(x) = 2x.
Hence, f'(x) = ((2cos(2x)*x2) - (sin(2x)*2x))/(x4)
(Will be easier to explain on a whiteboard w/ standard visualisation of functions)

LR
Answered by Leo R. Maths tutor

3713 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve (3x+6)/4 - (2x-6)/5 = (x+7)/8.


Find the equation of the tangent to: y = X^2 + 3x + 2 at the point (2,12)


Find the turning points on the curve with the equation y=x^4-12x^2


How do you sketch r=theta? I don't really understand polar coordinates.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning