If f(x) = sin(2x)/(x^2) find f'(x)

As f(x) is in the form of u(x)/v(x) we can apply the rule that f'(x) = (u'(x)*v(x) - v'(x)*u(x))/(v(x)2), pulled from the C3 formula booklet.
If u(x) = sin(2x) then u'(x) = 2cos(2x).
If v(x) = x2 then v'(x) = 2x.
Hence, f'(x) = ((2cos(2x)*x2) - (sin(2x)*2x))/(x4)
(Will be easier to explain on a whiteboard w/ standard visualisation of functions)

LR
Answered by Leo R. Maths tutor

3780 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I implicitly differentiate and why does it work? (Assuming understanding of differentiation)


A tunnel has height, h, (in metres) given by h=14-x^2 where x is the horizontal distance from the centre of the tunnel. Find the cross sectional area of the tunnel. Also find the maximum height of a truck passing through the tunnel that is 4m wide.


How would I write (1+4(root)7)/(5+2(root)7) in the form m + n(root)7, where m and n are integers?


Find the integral of y=6/(e^x+2) using calculus.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning