If f(x) = sin(2x)/(x^2) find f'(x)

As f(x) is in the form of u(x)/v(x) we can apply the rule that f'(x) = (u'(x)*v(x) - v'(x)*u(x))/(v(x)2), pulled from the C3 formula booklet.
If u(x) = sin(2x) then u'(x) = 2cos(2x).
If v(x) = x2 then v'(x) = 2x.
Hence, f'(x) = ((2cos(2x)*x2) - (sin(2x)*2x))/(x4)
(Will be easier to explain on a whiteboard w/ standard visualisation of functions)

Answered by Leo R. Maths tutor

3249 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Lorem ipsum dolor sit amet


proof for the derivative of sin(x) is cos(x) (5 marks)


How do you differentiate 2 to the power x?


A curve is defined by the parametric equations x=(t-1)^3, y=3t-8/(t^2), t is not equal to zero. Find dy/dx in terms of t.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences