John wants to separate a rectangular part of his garden for his puppy. He has material for a 100-meter long fence and he plans to use one side of his house as a barrier. How should John select the sizes of his fence in order to gain the biggest territory?

We can denote the sides of the rectangle with a and b. As one side of the separated area is going to be the wall of the house, we do not have to use a fence there. Therefore, we will have two sides, one denoted by a and one denoted by b (as the other b is the wall). The territory of the separated area can be written as a function f(x)=ab (a multiplied by b). The circumference of the territory is a+a+b=100. Thus, b=100-2a. Now, if we plug this back into f(x)=ab we can express the territory as f(x)=a(100-2a)=100a-2a2.Our task is to find the maximum value of function f(x)=100a-2a2 which we can do by differentating it.The first derivative of f(x) is f'(x)=100-4a. Our first order condition to find the maximum of f(x) is f'(x) to be equal to 0. Setting 100-4a=0 we get that a=25.We can check whether it is local maximum or minimum point by differentiating the expression again for which we get f''(x)=-4. As the second derivative is a negative number, our second order condition is satisfied for a=25 being the maximum point.Plugging a=25 into the expression b=100-2a we get b=50.Thus, the sizes that give us the maximum territory is 25 meters and 50 meters respectively.The maximum territory is 25x50=1250.

SG
Answered by Soma G. Maths tutor

3047 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of mass 5kg is on a rough slope inclined at an angle of 30 degrees to the horizontal, it is at the point of sliding down the slope. Calculate the coefficient of friction between the block and the slope.


Find the stationary point on the line of y = 6x - x^2 and state whether this point is a maximum or a minimum


What are the limits of an inverse tan graph.


A stone is thrown from a bridge 10m above water at 30ms^-1 30 degrees above the horizontal. How long does the stone take to strike the water? What is its horizontal displacement at this time?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning