Given that y = cos(3x)cosec(5x), use the product rule to find dy/dx.

Write out the product rule: if y=f(x)g(x) where f and g are functions, dy/dx = f'(x)g(x) + f(x)g'(x)
Substitute in the expressions from the question:Therefore if f(x)=cos(3x) and g(x) = cosec(5x), f'(x) = -3sin(3x) and g'(x) = -5cosec(5x)cot(5x)
Solve the question: It follows that if y=f(x)g(x), then dy/dx = -3sin(3x)cosec(5x) - 5cos(3x)cosec(5x)cot(5x) or equivalently dy/dx = -3sin(3x)/sin(5x) - 5cos(3x)cos(5x)/sin^2(5x)

Answered by Harry L. Maths tutor

3164 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that 2 cot (2x) + tan(x) == cot (x)


solve sin(2x)=0.5. between 0<x<2pi


How do I differentiate a function of x and y with respect to x?


Find the value of 2∫1 (6x+1) / (6x2-7x+2) dx, expressing your answer in the form mln(2) + nln(3), where m and n are integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences