Given that y = cos(3x)cosec(5x), use the product rule to find dy/dx.

Write out the product rule: if y=f(x)g(x) where f and g are functions, dy/dx = f'(x)g(x) + f(x)g'(x)
Substitute in the expressions from the question:Therefore if f(x)=cos(3x) and g(x) = cosec(5x), f'(x) = -3sin(3x) and g'(x) = -5cosec(5x)cot(5x)
Solve the question: It follows that if y=f(x)g(x), then dy/dx = -3sin(3x)cosec(5x) - 5cos(3x)cosec(5x)cot(5x) or equivalently dy/dx = -3sin(3x)/sin(5x) - 5cos(3x)cos(5x)/sin^2(5x)

Answered by Harry L. Maths tutor

3008 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.


Given that Y=(x+3)(x+5); find dy/dx


A circle C with centre at the point (2, –1) passes through the point A at (4, –5).....


Differentiate x^3+ x^2+2=y


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences