Integrate the function f(x)=3^x+2 with respect to x

First note that a=eln(a) and ln(ab)=bln(a)By substituting a=3x we get a=3x=eln(3^x)=exln(3), and hence f(x)=exln(3)+2∫ f(x)dx=∫ exln(3)+2 dx . First we can split this into the sum of two integrals ∫ exln(3)dx + ∫ 2 dxRemember that d/dx(eg(x)) for some function g is equal to g'(x)eg(x) by the chain rule so ∫ exln(3)dx must equal 1/ln(3)exln(3) as 1/ln(3)d/dx(xln(3))=1/ln(3)ln(3)=1And ∫ 2 dx is solved by simply raising the power of any x elements by 1 and dividing the coefficient by this raised power. Hence ∫ 2 dx=2/1x0+1=2x=2xSo ∫ f(x)dx=(1/ln(3)exln(3))+2x+c (remembering the constant) and by the previous substitution 3x=ex*ln(3) ∫ f(x)dx=1/ln(3)*3x+2x+c

Answered by Christian C. Maths tutor

2724 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For the function f(x) = 4x^3 -3x^2 - 6x, find a) All points where df/dx = 0 and b) State if these points are maximum or minimum points.


what is the difference between remainder and factor theorem?


Find an expression in terms of powers of cos(x) for cos(5x)


Find the co ordinates and nature of the turning points of the curve C withe equation, y=2x^3-5x^2-4x+2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences