Let f(x)=x^x for x>0, then find f'(x) for all x>0.

A common misconception from many students when tackling this problem is that they think the usual 'power rule' works. However, in this case the power is itself a function of x and not just a constant, so this would not work. To solve this problem, we will have to 'get rid' of the power. We will do this using the natural logarithm. ln(f(x))=xln(x) (1)Differentiating (1) and using the product rule on the right hand side and the chain rule on the left hand side, we get f'(x)/f(x)=ln(x)+1 Lastly rearranging for f'(x) and substituting for f(x), we derived f'(x)=x^x ( ln(x)+1) as required. This technique is known as logarithmic differentiation.

MF
Answered by Michael F. Further Mathematics tutor

2143 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A child weighing 50kg is pushed down a 2m long slide (u=0.1), angled at 45 degrees from the horizontal, at 5m/s. At what speed does the child reach the bottom of the slide?


Find the reflection of point P(2,4,-6) in the plane x-2y+z=6


Given z=cosx+isinx, show cosx=1/2(z+1/z)


The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning