If y = sec(z)tan(z)/sqrt(sec(z)) then find the indefinite integral of y with respect to z.

Using the substitution u = sec(z)=> du = sec(z)tan(z) dz.So, the integral ∫ y dz = ∫ sec(z)tan(z)/sqrt(sec(z)) dz=> ∫ y dz = ∫ 1/sqrt(u) du = 2sqrt(u) + C = 2sqrt(sec(z)) + C.

JM
Answered by Jordan M. Maths tutor

7036 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 5x(3) + 7x + 3, find A) dy/dx B) d2y/dx2


Find d/dx (ln(2x^3+x+8))


Given that the graph f(x) passes through the point (2,3) and that f'(x)=6x^2-14x+3, find f(x).


How does finding the gradient of a line and the area under a graph relate to real world problems?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning