If y = sec(z)tan(z)/sqrt(sec(z)) then find the indefinite integral of y with respect to z.

Using the substitution u = sec(z)=> du = sec(z)tan(z) dz.So, the integral ∫ y dz = ∫ sec(z)tan(z)/sqrt(sec(z)) dz=> ∫ y dz = ∫ 1/sqrt(u) du = 2sqrt(u) + C = 2sqrt(sec(z)) + C.

JM
Answered by Jordan M. Maths tutor

6325 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The tangent to a point P (p, pi/2) on the curve x=(4y-sin2y)^2 hits the y axis at point A, find the coordinates of this point.


What is the indefinite integral of xlog(x)?


x = t^3 + t, y = t^2 +1, find dy/dx


Factorize completely x^3 - 6x^2 + 11x - 6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences