If y = sec(z)tan(z)/sqrt(sec(z)) then find the indefinite integral of y with respect to z.

Using the substitution u = sec(z)=> du = sec(z)tan(z) dz.So, the integral ∫ y dz = ∫ sec(z)tan(z)/sqrt(sec(z)) dz=> ∫ y dz = ∫ 1/sqrt(u) du = 2sqrt(u) + C = 2sqrt(sec(z)) + C.

Answered by Jordan M. Maths tutor

6318 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ln(x) wrt dx


Finding the tangent of an equation using implicit differentiation


z = 5 - 3i Find z^2 in a form of a + bi, where a and b are real constants


sin(x)/(cos(x)+1) + cos(x)/(sin(x)+1) = 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences