Solve the differential equation dx/dt = -2(x-6)^(1/2) for t in terms of x given that x = 70 when t = 0.

First, manoeuvre variables so that we can integrate the equation.
1/(x-6)^(1/2) dx = -2 dt
Integrate the equation and add the constant.
2(x-6)^(1/2) = -2t +c
Solve for t.
t = -(x-6)^(1/2) - c
Substitute x = 70 when t = 0 to find the constant.
0 = -(70-6)^(1/2) - c
c = -8
Substitute c into our equation for t in terms of x.
t = 8 - (x-6)^(1/2)

Answered by Louis P. Maths tutor

4804 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 + 2x + 3. Given that (x-3) is a factor of f(x), express f(x) in factorised form.


How do you integrate by parts?


Simplify (5-root3)/(5+root3)


How to do the product rule for differentiation


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences