Solve the differential equation dx/dt = -2(x-6)^(1/2) for t in terms of x given that x = 70 when t = 0.

First, manoeuvre variables so that we can integrate the equation.
1/(x-6)^(1/2) dx = -2 dt
Integrate the equation and add the constant.
2(x-6)^(1/2) = -2t +c
Solve for t.
t = -(x-6)^(1/2) - c
Substitute x = 70 when t = 0 to find the constant.
0 = -(70-6)^(1/2) - c
c = -8
Substitute c into our equation for t in terms of x.
t = 8 - (x-6)^(1/2)

Answered by Louis P. Maths tutor

4462 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation: y=3x^2*(x+2)^6 Find dy/dx


What is the coefficient of x^4 in the expansion of (x+3)^7


Differentiate the following: 4x^3 + sin(x^2)


For which values of k does the quadratic equation 2x^2+kx+3=0 only have one unique solution?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences