Solve the differential equation dx/dt = -2(x-6)^(1/2) for t in terms of x given that x = 70 when t = 0.

First, manoeuvre variables so that we can integrate the equation.
1/(x-6)^(1/2) dx = -2 dt
Integrate the equation and add the constant.
2(x-6)^(1/2) = -2t +c
Solve for t.
t = -(x-6)^(1/2) - c
Substitute x = 70 when t = 0 to find the constant.
0 = -(70-6)^(1/2) - c
c = -8
Substitute c into our equation for t in terms of x.
t = 8 - (x-6)^(1/2)

Answered by Louis P. Maths tutor

4687 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve y = 2x^3 -ax^2 +8x+2 passes through the point B where x = 4. Given that B is a stationary point of the curve, find the value of the constant a.


find the value of dy/dx at the point (1,1) of the equation e^(2x)ln(y)=x+y-2


How to integrate ln(x)


Differentiate with respect to x: w=4x^2 + 3sin(2x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences