Find a solution for the differential equation dy/dx=exp(-y)*sin2x which passes through the origin.

First separate the variables so that the left side of the equation is an expression only in terms of y and the right side only in terms of x.exp(y)dy=sin2x dxSecondly both sides have to be integrated to obtain an expression for exp(y) in terms of x.exp(y)=-(1/2)cos2x+cFinally take the natural log to find an expression for y in terms of x, the general solution.y=ln(-(1/2)cos2x+c)To work out the constant c substitute the x and y coordinates of a known point into the general solution. In this case the origin(x=0,y=0).0=ln(-(1/2)+c) Therefore c=3/2 and the particular solution to the differential equation is y=ln(-(1/2)cos2x+3/2)y=ln((3-cos2x)/2)

FB
Answered by Felix B. Maths tutor

3146 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to find the stationary point of y= x^2-108x^(1/2)+16 and determine the nature of the stationary point?


A car is travelling with a velocity of "0.5t^2+t+2" m/s at t=0 (where t is in seconds), find the acceleration of the car at a) t=0 b)t=2


Find the equation of the the tangent to the curve y=x^3 - 7x + 3 at the point (1,2)


Use integration to find I = ∫ xsin3x dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences