Find a solution for the differential equation dy/dx=exp(-y)*sin2x which passes through the origin.

First separate the variables so that the left side of the equation is an expression only in terms of y and the right side only in terms of x.exp(y)dy=sin2x dxSecondly both sides have to be integrated to obtain an expression for exp(y) in terms of x.exp(y)=-(1/2)cos2x+cFinally take the natural log to find an expression for y in terms of x, the general solution.y=ln(-(1/2)cos2x+c)To work out the constant c substitute the x and y coordinates of a known point into the general solution. In this case the origin(x=0,y=0).0=ln(-(1/2)+c) Therefore c=3/2 and the particular solution to the differential equation is y=ln(-(1/2)cos2x+3/2)y=ln((3-cos2x)/2)

Answered by Felix B. Maths tutor

2928 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that d/dx(cosx)=-sinx show that d/dx(secx)=secx(tanx)


How do you find the point of intersection of two vector lines?


I don’t think I’m smart enough for this course, should I drop it?


The curve y = 4x^2 + a/x +5 has a stationary point. Find the value of the positive constant 'a' given that the y-coordinate of the stationary point is 32. (OCR C1 2016)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences