a) Differentiate and b) integrate f(x)=xcos(2x) with respect to x

To differentiate xcos(2x), you first have to use the product rule, because this function is two functions (x and cos(2x) multiplied togetherNow you have x*(cos(2x))'+cos(2x)To differentiate cos(2x) you have to use the chain rule, in this case its -2sin(2x)Therefore xcos(2x)'=cos(2x)-2xsin(2x)To integrate xcos(2x) we must use integration by partsTo recall= Integral(u(x)v'(x)dx)=u(x)v(x)-integral(u'(x)v(x)dx)so we choose u=x u'=1 and v'=cos(2x) v=0.5sin(2x)so the integral is now written as 0.5xsin(2x)-integral(0.5sin(2x))dx=0.5xsin(2x)-0.25cos(2x)+C

Answered by Danila M. Maths tutor

3378 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate cos^2(x)*sin(x)


How can I maximise my performance and efficiency in an exam?


Solve the equation cosec^2(x) = 1 + 2cot(x), for -180° < x ≤ 180°.


(Follow on from previous question) A curve has equation y= x^2+3x+2. Use your previous results to i) find the vertex of the curve ii) find the equation of the line of symmetry of the curve


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences