Given that y = (sin(6x))(sec(2x) ), find dy/dx

We can find dy/dx by using the product rule: If y=uv then dy/dx = u (dv/dx)+ v (du/dx). In this question u= sin(6x) and v= sec(2x).So du/dx= 6cos(6x) and dv/dx=2sec(2x)tan(2x), using our rules for differentiating trig functions.Subbing this into our product rule formula gives us: dy/dx= sin(6x)(2sec(2x)tan(2x)) + sec(2x)(6cos(6x)).So dy/dx = 2sin(6x)sec(2x)tan(2x) + 6cos(6x)sec(2x), and this is our final answer as it cannot be simplified any more.

EH
Answered by Eli H. Maths tutor

3531 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When do you know to use integration by parts?


A curve has the equation: x^2(4+y) - 2y^2 = 0 Find an expression for dy/dx in terms of x and y.


How to write an algebraic fraction in a given form e.g. (3+13x-6x^2)/(2x-3) as Ax + B + C/(2x-3) where A, B and C are natural numbers


Differentiate sin(x)cos(x) with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning