Solve the differential equation : dy/dx - x^3 -5x = 0

First rearrange the equation dy/dx = x3 + 5x Then move the dx to the RHS of the equation dy = ( x3+ 5x)dxThen integrate both sides, with respect to y on the LHS and with respect to x on the RHS (don't forget the constant of integration!)y = x4/4 + 5x2/2 + CReminder: even though we integrate twice, we only need one constant in our solution, as a constant plus another constant is also a constant.

Answered by Olivia M. Maths tutor

3589 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: y+4x+1=0 and y^2+5x^2+2x=0


How to do Integration by Parts?


Integrate sinx*ln(cosx) with respect to x.


A curve has the equation, 6x^2 +3xy−y^2 +6=0 and passes through the point A (-5, 10). Find the equation of the normal to the curve at A.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences