Solve the differential equation : dy/dx - x^3 -5x = 0

First rearrange the equation dy/dx = x3 + 5x Then move the dx to the RHS of the equation dy = ( x3+ 5x)dxThen integrate both sides, with respect to y on the LHS and with respect to x on the RHS (don't forget the constant of integration!)y = x4/4 + 5x2/2 + CReminder: even though we integrate twice, we only need one constant in our solution, as a constant plus another constant is also a constant.

OM
Answered by Olivia M. Maths tutor

3874 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate by parts?


integrate with respect to x the function f(x)= xln(x)


Find the gradient of 4(8x+2)^4 at X coordinate 2


What is a logarithm?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences