The ratio between the molar mass of an alkene(A) and an alkyne(B) with the same number of carbon atoms is 1.05. Find the molecular formulas of the two hydrocarbons then write the reaction for how we can obtain the alkene A from the alkyne B.

We start by remembering the general formulas of alkenes and alkynes:
Alkenes - CnH2n
Alkynes - CnH2n-2
We calculate the molar mass of both of these using the fact that the atomic mass of carbon is 12 and for hydrogen 1 :
 μA=12n+2n=14n grams/mole
 μB=12n+2n-2=14n-2 grams/mole
The ratio then becomes:
μ/ μB=1.05
14n / 14n - 2 = 1.05
14n =(14n - 2) * 1.05
14n = 14.7n - 2.1
14.7n - 14 = 2.1
0.7n = 2.1
n = 3
Therefore, our hydrocarbons are:
A = C3H6 - propene  
B = C3H4 - propyne
The reaction to obtain propene from the propyne is:
CH≡C-CH3 + H2 --Ni---> CH2=CH-CH3
The reaction is a hydrogenation one and the condition needed for it Nickel.

Answered by Cosmin B. Chemistry tutor

8581 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

1. X with 2,4-DNPH forms a red precipitate. 2. X reduces blue Copper ions into red precipitate. What kind of compound is X?


What is optical isomerism and how can you distinguish between optical isomers?


Explain the trend in ionisation energies for the group one metals?


A) The compound butan-2-ol reacts with acidified potassium dichromate(VI) to form a new compound. Give the IUPAC name of the Product. B) 2,2-dimethyl butan-2-ol was subjected to the same conditions. State and explain the outcome


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences