A car of mass m travelling with a velocity v comes to rest over a distance d in time t. The constant frictional force acting on the car while it is braking is found using:

Newton's Second Law: F=maa=v-u/tUsing SUVAT equations: v2= u2+2asv (final velocity)=0 u(inital velocity)= v s=d Rearranging gives: -v2=2ad a=-v2/2d Therefore F= -mv2/2dNegative sign suggests the car is slowing down (negative acceleration)



GH
Answered by Ghafoor H. Physics tutor

8003 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the critical angle of a beam of light leaving a transparent material with a refractive index of 2?


What is the Young's modulus of a material?


What is gravitational potential and how can gravitational potential energy be used to estimate the escape velocity of a planet of mass m and radius r?


A metal detector consists of a battery providing an alternating current to a transmitter coil and a receiver coil connected to a loudspeaker. Using Faraday's Law of Induction explain how a metal detector works. (5 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning