A car of mass m travelling with a velocity v comes to rest over a distance d in time t. The constant frictional force acting on the car while it is braking is found using:

Newton's Second Law: F=maa=v-u/tUsing SUVAT equations: v2= u2+2asv (final velocity)=0 u(inital velocity)= v s=d Rearranging gives: -v2=2ad a=-v2/2d Therefore F= -mv2/2dNegative sign suggests the car is slowing down (negative acceleration)



GH
Answered by Ghafoor H. Physics tutor

7910 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe and explain the life cycle of a star?


When a particle travels in a circle of radius r, at constant speed v, what is its acceleration


An aeroplane lands on the runway with a velocity of 50 m/s and decelerates at 10 m/s^2 to a velocity of 20 m/s. Calculate the distance travelled on the runway.


In terms of the photoelectric effect, what is the work function of a material?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning