A car of mass m travelling with a velocity v comes to rest over a distance d in time t. The constant frictional force acting on the car while it is braking is found using:

Newton's Second Law: F=maa=v-u/tUsing SUVAT equations: v2= u2+2asv (final velocity)=0 u(inital velocity)= v s=d Rearranging gives: -v2=2ad a=-v2/2d Therefore F= -mv2/2dNegative sign suggests the car is slowing down (negative acceleration)



Answered by Ghafoor H. Physics tutor

6570 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A fluorescent light uses a lining to emit visible light, explain why this is necessary and how it works.


When 0.81 m of a wire with cross-sectional area of 3.1*10^-11 m^2 is connected across a 2 V battery a current of 1.6 A flows in the wire. Find the resistivity of the material of the wire.


A spacecraft called Deep Space 1, mass 486 kg, uses an “ion-drive” engine which expels 0.13 kg of xenon propellant each day at 30kms^-1. What is the initial increase in speed of the spacecraft


How to solve horizontally-launched projectile motion problems using equations of motion?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences