Solve algebraically the simultaneous equations: x^2 + y^2 = 25 and y - 3x = 13

Firstly, we need to use one equation to find an expression for one variable in terms of the other. Then we can substitute this expression into the other equation and solve for that variable. Using this numerical value we can then solve for the other variable using either of the original equations. Using y - 3x = 13 we can obtain y = 13 + 3x Then substitute this in for y in the other equation: x2 + (13 + 3x)2 = 25 Expand and simplify: x2 + 169 + 39x + 39x + 9x2 = 25; 10x2 + 78x + 169 = 25; 10x2 + 78x + 144 = 0 We can divide both sides by 2 to simplify further: 5x2 + 39x + 72 = 0 Now we have a quadratic equation to solve. To solve by factorisation, we need to think of two numbers which multiply to 5 x 72 (=360) and add to 39. Those numbers are 24 and 15. We can then rewrite the quadratic equation as: 5x2 + 15x + 24x + 72 = 0 Then factorise. 5x(x+3) + 24(x+3) = 0; (5x+24)(x+3) = 0 So either 5x + 24 = 0 or x + 3 = 0 So x = -24/5 or x = -3Substitute each of these values of x into either original equation to find the corresponding value of y: When x = -24/5, y = 13 + 3x, y = 13 - 72/5, y = 65/5 - 72/5, y = -7/5; When x = -3, y = 13 -9, y = 4

GW
Answered by Gregor W. Maths tutor

3609 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A train travels for 240 minutes to travel a distance of 220 miles. Assuming the trains speed is constant, what is the train's speed in miles per hour?


How would you work out the price of a trip if it is usually £24 but a man has a railcard that gives him 30% off?


how do ratios work


Rearranging equations


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning