Find the gradient of the tangent to the curve y=4x^2 - 7x at x = 2

First, we differentiate our equation using the power rule:dy/dx = 8x - 7This is the gradient of our tangent, to the original equation, at any point x. So, to calculate the gradient at x = 2, we substitute this value into dy/dx.So, we have: gradient = 8(2) - 7 = 9 as required.

Answered by Luke A. Maths tutor

4205 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the normal to a curve at a given co-ordinate?


i) Using implicit differentiation find dy/dx for x^2 + y^2 = 4 ii) At what points is the tangent to the curve parallel to the y axis iii) Given the line y=x+c only intersects the circle once find c given that c is positive.


If y = 1/x^3, find an expression for dy/dx


The quadratic equation 2x^2 + 8x + 1 = 0 has roots x1 and x2. Write down the value of x1+x2 and x1*x2 and find the value of x1^2 + x2^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences