Firstly, we need the equation to be in terms of one cosh argument if possible, which can be done by the identity cosh 2x = 2cosh2x - 1. Upon substitution and simplification we get 6cosh2x - 29cosh x + 35 = 0 which factorises to (3cosh x - 7)(2cosh x - 5) = 0. This gives two equations, namely, cosh x = 7/3, cosh x = 5/2.Next, the inverse cosh function can be determined by setting y = arcosh x => cosh y = x => (1/2)(ey + e-y) = x =>e2y - 2xey + 1 = 0, which is a quadratic in ey, which, the quadratic formula, solves to ey = (1/2)(2x +- sqrt(4x2 - 4)) = x +- sqrt(x2 - 1). Taking natural logarithms then gives arcosh x = ln(x +- sqrt(x2 - 1)). However, since cosh x >= 1 for all x, we take the positive square root, giving arcosh x = ln(x + sqrt(x2 - 1))Finally, we can gain our final answers by using the log form of arcosh on 7/3 and 5/2 and simplifying to give x = ln(5/2 + sqrt(21)/2) & x = ln(7/3 + 2sqrt(10)/3).