An internet shopping company is planning to use drones to deliver packages.During a test the drone is hovering at a constant height above the ground.The mass of the drone is 5·50 kg. The mass of the package is 1·25 kg. See questions below

a) Determine the upward force produced by the droneWe can simplify the problem by drawing a free body diagram. This allows us to analyse the forces involved. We are told the drone is stationary, meaning the upwards and downwards forces are balanced. Therefore upwards thrust balances the weight of the drone and package. We can calculate the weight by using equation w = mg in datasheetW = mg = (5.5+1.25) * 9.8 = 66 Newtons. This must equal the upward force hence thrust = 66Nb) The package is now lowered using a motor and a cable. A battery supplies 12V across the motor. The resistance of the motor is 9∙6 Ω. Calculate the power dissipated by the motor. List knowns and unknown and apply to datasheet. We know the voltage and resistance, and there is an equation P = V2/R. Therefore:P = 122 / 9.6 = 15 Watts.c) While the package is being lowered the cable breaks. The upward force produced by the drone remains constant. Describe the vertical motion of the drone immediately after the cable breaks.The upwards force remains unchanged, however the weight of the system has decreased. Therefore there is an unbalanced force upwards, so the drone will accelerate upwards.

Related Physics Scottish Highers answers

All answers ▸

A photon of wavelength 656.3nm is emitted in the Balmer series of a Hydrogen emission lamp. (a). Show that the frequency of the photon is 4.57*10^14 Hz. (b).Use the Planck-Einstein relationship to calculate the energy of the photon.


In a lab a hydrogen spectral line is observed to have a wavelength of 656nm. This line is observed in a distance galaxy to have a wavelength of 661nm, what is the recessional velocity of the galaxy?


A launcher 1m tall fires tennis balls with a velocity of 15m/s at an angle of 20 degrees from horizontal. Neglecting air resistance, calculate the maximum height, time of flight and distance traveled by the ball.


If a footballer kicks a ball straight down the pitch at 6 ms-1 at an angle θ of 30° above the horizontal, what is the maximum height reached by the ball?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences