Integrate sec^2(x)tan(X)dx

This can be done with integration by substitution. If we let u=tanx then du/dx=sec^2(X). If we substitute U into the integrand we get it being u(sec^2(X))dx. rearranging the du/dx equation to make dx the subject and we get dx=1/(sec^2(x)) du and so subbing this into the equation we see the sec^2(x) cancel. This leaves the integral of udu, which gives 1/2(u^2) + c, which is (1/2)tan^2(x) + c when subbing u=tan(x) back in.

AZ
Answered by Amin Z. Maths tutor

24864 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = (4x^2)ln(x) then find the second derivative of the function with respect to x when x = e^2 (taken from a C3 past paper)


What is the integral of ln x dx


Given y=x^2(1+4x)^0.5, show that dy/dx=2x(5x+1)/((1+4x)^0.5)


Why do we need to differentiate?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning