Integrate sec^2(x)tan(X)dx

This can be done with integration by substitution. If we let u=tanx then du/dx=sec^2(X). If we substitute U into the integrand we get it being u(sec^2(X))dx. rearranging the du/dx equation to make dx the subject and we get dx=1/(sec^2(x)) du and so subbing this into the equation we see the sec^2(x) cancel. This leaves the integral of udu, which gives 1/2(u^2) + c, which is (1/2)tan^2(x) + c when subbing u=tan(x) back in.

Answered by Amin Z. Maths tutor

19992 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Relative to a fixed origin O, the point A has position vector (8i+13j-2k), the point B has position vector (10i+14j-4k). A line l passes through points A and B. Find the vector equation of this line.


How do I differentiate "messy" functions?


What is the equation of the tangent at the point (2,1) of the curve with equation x^2 + 3x + 4.


why is the number e important?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences