Differentiante y = arctan(c)

y = arctan(x)tan(y) = xsec2(y) = dx/dyfrom cos2A + sin2A = 1, we know that 1 + tan2A = sec2A (divide by cos2A), so we substitute in1 + tan2(y) = dx/dyfrom the initial relationship,1 + x2 = dx/dyfinally reciprocate the expression to get1/(1+x2) = dy/dx (Solved)

SS
Answered by Savvas S. Maths tutor

3119 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given a function f(x)=3x^2+5x-1, find its derivative.


The gradient of a curve is defined as Dy/dx = 3x^2 + 3x and it passes through the point (0,0), what is the equation of the curve


y = 4x^3 - 5/x^2 Find dy/dx


Solve the equation 2cos2(x) + 3sin(x) = 3, where 0<x<=π


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning