Differentiante y = arctan(c)

y = arctan(x)tan(y) = xsec2(y) = dx/dyfrom cos2A + sin2A = 1, we know that 1 + tan2A = sec2A (divide by cos2A), so we substitute in1 + tan2(y) = dx/dyfrom the initial relationship,1 + x2 = dx/dyfinally reciprocate the expression to get1/(1+x2) = dy/dx (Solved)

Answered by Savvas S. Maths tutor

2449 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the limit definition of the derivative, find the derivative of f(x)=sin(3x) at x=2π


Differentiating (x^2)(sinx) Using the Product Rule


Given the parametric equations x = t^2 and y = 2t -1 find dy/dx


Using logarithms solve 8^(2x+1) = 24 (to 3dp)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences