Differentiante y = arctan(c)

y = arctan(x)tan(y) = xsec2(y) = dx/dyfrom cos2A + sin2A = 1, we know that 1 + tan2A = sec2A (divide by cos2A), so we substitute in1 + tan2(y) = dx/dyfrom the initial relationship,1 + x2 = dx/dyfinally reciprocate the expression to get1/(1+x2) = dy/dx (Solved)

Answered by Savvas S. Maths tutor

2644 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 4x^3 – 5/(x^2) , x not equal to 0, find in their simplest form (a) dy/dx, and (b) integral of y with respect to x.


Find the indefinite integral ∫(x^2)*(e^x) dx (Edexcel C4 June 2013 Question 1)


Explain how integration via substitution works.


The Curve, C, has equation: x^2 - 3xy - 4y^2 +64 =0 Find dy/dx in terms of x and y. [Taken from Edexcel C4 2015 Q6a]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences