Differentiante y = arctan(c)

y = arctan(x)tan(y) = xsec2(y) = dx/dyfrom cos2A + sin2A = 1, we know that 1 + tan2A = sec2A (divide by cos2A), so we substitute in1 + tan2(y) = dx/dyfrom the initial relationship,1 + x2 = dx/dyfinally reciprocate the expression to get1/(1+x2) = dy/dx (Solved)

Answered by Savvas S. Maths tutor

2620 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ⌠( xcos^2(x))dx


Find the exact solution to ln(2y+5) = 2 + ln(4-y)


Given that y=(4x+1)^3*sin(2x) , find dy/dx


How do you factorise a quadratic equation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences