How does temperature affect the position of equilibrium if the reaction is exothermic?

Imagine the reaction A + B <-> C+D where the forward reaction is exothermic. If we increase the temperature of the surroundings, the equilibrium is going to shift to the direction that reduces the temperature. Since we know that endothermic reactions take in heat from the surroundings, and so make the surroundings colder, this means that the equilibrium is going to shift to favour the endothermic direction in order to counteract the increase in temperature. That means the reaction will go in the backwards direction and so produce more A+B.Using the same idea, if we decrease the temperature of the surroundings, the equilibrium wants to shift to increase the temperature, so it will shift in the exothermic direction which gives off heat. That means the reaction is going to go forwards, and so produce more C+D.

FA
Answered by Frances A. Chemistry tutor

8308 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

20cm3 of 0.5moldm-3 of HCL is diluted by adding 15cm3 of water. This diluted solution is titrated against a 0.3moldm-3 solution of NaOH. What is the volume of the NaOH in cm3 required to reach the endpoint of the titration?


What are covalent bonds?


why does silicon dioxide have such a high melting/boiling point?


Why does magnesium have a higher melting point than sodium?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning