Solve algebraically the simultaneous equations x^2 + y^2 = 25 y – 3x = 13

First begin with rearranging the second equation to put it in terms of Y. Then substitute by putting the second equation (y=3x+13) into equation one as Y^2. Expand (3x+13)^2 and add like terms to form 10x^2 + 78x + 144 =0. Simplify and fractionise to get the terms of x=-3 and x= -24/5. Finally substitute each term of X into the original equation of (y=3x+13) to get the Y terms of Y=4 and Y=-3/5

Answered by Dani L. Maths tutor

2407 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Emma wants to buy a radio, the full price is £80. In the shop, she is given a discount. A year later, she sells the radio for £78, giving her a profit of 30% of what she bought it for the year before. What discount did she receive? (4)


What is 700 million in standard form?


Expand (x-3)(x+7)


Solve the simultaneous equations: 3x+7y=18 and x+2y=5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences