Find the general solution of the equation tan(2x + pi/2) = SQRT(3), giving your answer for x in terms of π in a simplified form.

Assume y = 2x + pi/2,
Since the period of 'tangent' is pi, the general solution of 'y' to valid the equation of tan(y) = SQRT(3) is the form of y = npi+pi/3 where 'n' is any positive or negative integer and zero.
Substitute y back to the equation, it becomes 2x + pi/2 = n
pi+pi/3.
Simplify this equation in the form of 'x', it becomes: x = 1/2(n*pi - pi/6) where 'n' is any positive or negative integer and zero.

Answered by Chunlong H. Maths tutor

3756 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the x-coordinates of any stationary points of the equation y = x^3 - 2x + 4/x


Find the exact solution to the equation: ln(3x-7) =5


y = 1/x^2, differentiate y (taken from AQA 2018 past paper)


Solve the differential equation dy/dx = 6xy^2 given that y=1 when x=2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences