Electrons moving in a beam have the same de Broglie wavelength as protons in a separate beam moving at a speed of 2.8 × 10^4 m/s . What is the speed of the electrons?

de Broglie wavelength formula:
λ = h/mv,
whereλ = wavelength,h = Planck's Constant = 6.626 x 10-34 Js,m = mass of object,v = object's velocity,
Mass of proton mp = 1.6726219 × 10-27 kg,Velocity of proton vp = 2.8 × 104 ms-1 ,Mass of electron me = 9.11 × 10-31 kg,
de Broglie wavelength of proton λp= h/mpvp = (6.626x10-34)/[(1.6726219 × 10-27)(2.8 × 104)] = 1.4170 x 10-11 m,de Broglie wavelength of electron λe= h/meve = λp= 1.4170 x 10-11 m,
Rearranging for ve, we get,
ve= h/λeme, ve = (6.626x10-34)/[(1.4170 x 10-11)(9.11 × 10-31)],ve = 5.1328 x 107 ms-1,ve = 5.1 x 107 ms-1 (correct to 2 significant figures)

Answered by Haider A. Physics tutor

8404 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

There is a point between the Moon and the Earth where the gravitational attractions are equal and opposite. How much further is this point from the Earth than the Moon


What does the double slit experiment tell us about light?


An engineering student found that the Youngs modulus of an alloy was 2.8 x 10^11 Pa. The 1.5m wire of the allow increased in length by 0.24% during an experiment. Calculate the stress on the wire.


A 1kg spring has an unloaded length 10cm and has an elastic constant of 100N/m. It is compressed to 6cm then placed facing upwards on the floor. When released it travels vertically upwards. How high does it jump? You may assume no energy is lost to heat o


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences