How can I remember how to differentiate and integrate cos and sin?

I find it is best whenever you open your maths paper to draw this diagram to help you remember: Sin(X) -> cos(X)-> -sin(X) -> -cos(X)----->
{Drawn in a circle on the board}
To differentiate you follow the circle clockwise from sine you get cosine but when you differentiate cosine there is a sign change and we get minus sine.
Also it is important to remember that if there is a coefficient, like:
Y= Cos(2x)
We have to times by this when we differentiate and divide by it when we integrate:
dY/DX= 2cos(2x) Integral(Y) = 1/2 cos(2x).
{Symbols drawn on board}
Shall we try some examples?

Answered by Hannah M. Maths tutor

3952 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express square root of 48 in the form n x square root of 3 , where n is an integer


A curve is defined by the parametric equations x = 3^(-t) + 1, y = 2 x 2^(t). Show that dy\dx = -2 x 3^(2t).


At t seconds, the temp. of the water is θ°C. The rate of increase of the temp. of the water at any time t is modelled by the D.E. dθ/dt=λ(120-θ), θ<=100 where λ is a pos. const. Given θ=20 at t=0, solve this D.E. to show that θ=120-100e^(-λt)


How do you differentiate y=ln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences