(Follow on from previous question) A curve has equation y= x^2+3x+2. Use your previous results to i) find the vertex of the curve ii) find the equation of the line of symmetry of the curve

i) y = x2+3x+2 = (x+3/2)2-1/4Solution for (x+3/2) = 0 is x coordinate, which is x = -3/2Solution for y value is the additional constant, which is y = -1/4Therefore the vertex (minimum point) is (-3/2,-1/4)
ii) The line of symmetry is x = -3/2 (a vertical line that runs through the vertex of the curve)

Answered by Ross I. Maths tutor

2853 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

3(a+4)=ac+5f. Rearrange to make a the subject.


Calculate the volume of revolution generated by the function, f(x) = (3^x)√x, for the domain x = [0, 1]


If I had an equation with both 'x' and 'y' present, how would I find the gradient?


Core 3 Differentiation: If y = (3x^2 + 2x + 5)^10, find its derivative, dy/dx. Hint: Use the chain rule.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences