How to integrate ln(x)?

You need to use a clever trick for this! Write ln(x) as 1ln(x), and use integration by parts:u=ln(x) v'=1u'=1/x v=xThen applying the formula we obtain∫ln(x)dx = xln(x) - ∫[(1/x)x] dx = = xln(x) - ∫1 dx = = xln(x) - x + C = x(ln(x) - 1) + CAnd if we have some data we can work out the constant of integration C.

KW
Answered by Krzysztof W. Further Mathematics tutor

2926 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the Cartesian equation of a plane containing the points A(1, 7, -2) B(4, -3, 2) and C(7, 8, 9).


Find the general solution of the differential equation d^2y/dx^2 - 2(dy/dx) = 26sin(3x)


A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.


Express cos5x in terms of increasing powers of cosx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning