How to integrate ln(x)?

You need to use a clever trick for this! Write ln(x) as 1ln(x), and use integration by parts:u=ln(x) v'=1u'=1/x v=xThen applying the formula we obtain∫ln(x)dx = xln(x) - ∫[(1/x)x] dx = = xln(x) - ∫1 dx = = xln(x) - x + C = x(ln(x) - 1) + CAnd if we have some data we can work out the constant of integration C.

KW
Answered by Krzysztof W. Further Mathematics tutor

3048 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How to determine the modulus of a complex number?


Use de Moivre's theorem to calculate an expression for sin(5x) in terms of sin(x) only.


Evaluate ∫sin⁴(x) dx by expressing sin⁴(x) in terms of multiple angles


Find the general solution to the differential equation; y'' + 4y' = 24x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning