How to integrate ln(x)?

You need to use a clever trick for this! Write ln(x) as 1ln(x), and use integration by parts:u=ln(x) v'=1u'=1/x v=xThen applying the formula we obtain∫ln(x)dx = xln(x) - ∫[(1/x)x] dx = = xln(x) - ∫1 dx = = xln(x) - x + C = x(ln(x) - 1) + CAnd if we have some data we can work out the constant of integration C.

KW
Answered by Krzysztof W. Further Mathematics tutor

2909 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do you plot a complex number in an Argand diagram?


Prove by induction the sum of n consecutive positive integers is of the form n(n+1)/2.


Prove by induction the sum of the natural numbers from 1 to n is n(n+1)/2


The set of midpoints of the parallel chords of an ellipse with gradient, constant 'm', lie on a straight line: find its equation; equation of ellipse: x^2 + 4y^2 = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning