How to integrate ln(x)?

You need to use a clever trick for this! Write ln(x) as 1ln(x), and use integration by parts:u=ln(x) v'=1u'=1/x v=xThen applying the formula we obtain∫ln(x)dx = xln(x) - ∫[(1/x)x] dx = = xln(x) - ∫1 dx = = xln(x) - x + C = x(ln(x) - 1) + CAnd if we have some data we can work out the constant of integration C.

KW
Answered by Krzysztof W. Further Mathematics tutor

3029 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.


What does it mean if two matrices are said to be commutative?


FP3- Find the eigenvalues and the eigenvector for the negative eigenvalue, from this 2x2 matrix of columns (2,1) and (3,0)


How do I use proof by induction?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning