A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.

Let's first find the equilibrium position of the spring. When the mass is first attached the spring will oscillate like a simple harmonic oscillator, in the real world the oscillator will eventually settle and this position will be the new equilibrium position of the oscillator. Let's make the velocity 0 and resolve Newton's Second Law vertically (N2L from here on in): For a spring F=kx, N2L vertically kx=mg. Yielding x=mg/k where g is the local acceleration due to gravity.
For the Equation of Motion, resolve N2L while the oscillator is in motion. To make life easier lets substitute x = x0+y where x0 is the new equilibrium position as this way we don't need to worry about any constants and can have y oscillate around y=0. Now: ma=-kx where a = d^2x/dt^2. Solving this differential equation we get y = Acos(wt) + Bsin(wt) where we find that w^2 = k/m. Knowing that w=2pif we can work out the frequency of these oscillations.

Related Further Mathematics A Level answers

All answers ▸

A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


Could you explain to me how proof by induction works?


In statistics, what is the benefit of taking a sample survey rather than a census?


How can I find the explicit formula for the inverse of sinh?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences