Answers>Maths>IB>Article

Solve (sec (x))^2 + 2tan(x) = 0

Using the trigonometric identity: (sec(x))^2 = (tan(x))^2 + 1 we get to (tan(x))^2 + 2tan(x) + 1 = 0. We can express this result as the multiplication of 2 equal factors arriving at (tan(x) + 1)^2 = 0. This leads us to tan(x) = -1. Therefore the answers will be x=3pi/4, 7pi/4

Answered by Lina L. Maths tutor

1713 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Given that f(x)=6x+4 and g(x)=3x^2+7, calculate g of f, for x=2.


Given h(x) = 9^x + 9 and g(x) = 10*3^x, find {x | h(x) < g(x)}.


Differentiation from first principles


Differentiate x^3 + y^4 = 34 using implicit differentiation


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences