Answers>Maths>IB>Article

Solve (sec (x))^2 + 2tan(x) = 0

Using the trigonometric identity: (sec(x))^2 = (tan(x))^2 + 1 we get to (tan(x))^2 + 2tan(x) + 1 = 0. We can express this result as the multiplication of 2 equal factors arriving at (tan(x) + 1)^2 = 0. This leads us to tan(x) = -1. Therefore the answers will be x=3pi/4, 7pi/4

Answered by Lina L. Maths tutor

1620 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

A scalene triangle has base of 5cm. The angle opposite to the base is 63°, and a second angle is 72°. Find the area of the traingle


Given that f(x)=6x+4 and g(x)=3x^2+7, calculate g of f, for x=2.


log_10⁡((1/(2√2))*(p+2q))=(1/2)(log_10⁡p+log_10⁡q),p,q>0,find p in terms of q.


Derive the following: f(x)=(96/x^2)+kx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences