Answers>Maths>IB>Article

Solve (sec (x))^2 + 2tan(x) = 0

Using the trigonometric identity: (sec(x))^2 = (tan(x))^2 + 1 we get to (tan(x))^2 + 2tan(x) + 1 = 0. We can express this result as the multiplication of 2 equal factors arriving at (tan(x) + 1)^2 = 0. This leads us to tan(x) = -1. Therefore the answers will be x=3pi/4, 7pi/4

Answered by Lina L. Maths tutor

1652 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Determine the integral: ∫5x^4dx


Let Sn be the sum of the first n terms of the arithmetic series 2+4+6+... . Find (i) S4 ; (ii) S100 .


log_10⁡((1/(2√2))*(p+2q))=(1/2)(log_10⁡p+log_10⁡q),p,q>0,find p in terms of q.


Given the function f(x)=λx^3 + 9, for λ other than zero, find the inflection point of the graph in terms of λ. How does the slope of the line tangent to the inflection point changes as λ varies from 0 to 1?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences