Integral of (cos(x))^2 or (sin(x))^2

When we try to integrate a function of x, we often use reverse chain rule looking for the derivative of our functions with the power on the side of our integral. However, with these two we do not have an extra sin(x) or cos(x0 respectively on the side and so we cannot integrate this how we normally would.The key here is to be aware of your trigonometric double angle identities.We know cos(2x)= (cos(x))^2 - (sin(x))^2, so if we want to integrate (sin(x))^2 for example, we sub in 1-(sin(x))^2 for our (cos(x))^2 in this double angle identity and then rearrange for (sin(x))^2 and now we will be integrating 0.5(1-cos(2x)) which is now a very standard trigonometric integral and the same can be done for our cos example.

Answered by Arif U. Maths tutor

2438 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do we know which formulas we need to learn for the exam?


f(x) = (4x + 1)/(x - 2). Find f'(x)


y = x^2 − 2*x − 24*sqrt(x) - i) find dy/dx ii) find d^2y/dx^2


The quadratic equation 2x^2 + 8x + 1 = 0 has roots x1 and x2. Write down the value of x1+x2 and x1*x2 and find the value of x1^2 + x2^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences