Integrate using by parts twice : ∫e^(x)*(cos(x))dx

By putting u=cosx and v’= e^x , use the by parts formula to get:∫e^(x)(cos(x)) dx = cos(x)e^x - ∫-(e^x)sin(x) dx. Use by parts again on the second term to get ∫ =cos(x)e^x + sin(x)e^x - ∫e^(x)(cos(x))dx. The last term is the same integral as the one we have to solve. Take this to the other side to get: 2 ∫e^(x)(cos(x))dx = cos(x)e^x + sin(x)e^x which gives: ∫e^(x)(cos(x))dx = (e^x(cosx+sinx))/2 + Constant

IZ
Answered by Isma Z. Maths tutor

6075 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write down the coordinates of the centre and the radius of the circle with equation x^2+y^2-4x-8y+11=0


Show how you can rewrite (x+1)(x-2)(x+3) into the form of ax^3 + bx^2 + cx + d


Common mistakes made in A-Level exams


Solve integral [3x^2 (x^3 + 1)^6] dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences