Integrate using by parts twice : ∫e^(x)*(cos(x))dx

By putting u=cosx and v’= e^x , use the by parts formula to get:∫e^(x)(cos(x)) dx = cos(x)e^x - ∫-(e^x)sin(x) dx. Use by parts again on the second term to get ∫ =cos(x)e^x + sin(x)e^x - ∫e^(x)(cos(x))dx. The last term is the same integral as the one we have to solve. Take this to the other side to get: 2 ∫e^(x)(cos(x))dx = cos(x)e^x + sin(x)e^x which gives: ∫e^(x)(cos(x))dx = (e^x(cosx+sinx))/2 + Constant

IZ
Answered by Isma Z. Maths tutor

5856 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I don't fully understand the purpose of integration. Could you please explain it to me?


Find the exact solution, in its simplest form, to the equation ln(4y + 7) = 3 + ln(2 – y) (Core Maths 3 Style Question)


Solve to find sin x , 4cos^2 + 7sin x -7 =0


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences