Use the substitution u=cos(2x)to find ∫(cos(2x))^2 (sin(2x))^3dx

Step 1 differentiate substitution: du/dx = -2sin(2x)Step 2 rearrange for dx: dx=du/-2sin(2x)Step 3 substitute: integral= ∫u2sin3(2x).du/-2sin(2x)Step 4 get the integral in terms of u by cancelling: integral=-o.5∫u2sin2(2x)dunote the identity sin2(2x)+cos2(2x)=1integral=-0.5∫u2(1-cos2(2x))du =-0.5∫u2(1-u2)du =-0.5∫u2-u4duStep 5 integrate: integral= -0.5(1/3u3-1/5u5)+cintegral= -1/6u3+1/10u5+cStep 6 replace u with substitution: integral= -1/6cos3(2x)+1/10cos5(2x)+c-

Answered by Nabeel A. Maths tutor

6361 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that 2tan(th) / (1+tan^2(th)) = sin(2th), where th = theta


Integrate (3x^2 - (1/4)x^-2 + 3) dx


Differentiate(dx) xy+4y-13


Differentiate a^x with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences