Find the derivative of sin(x)/x^3 with respect to x

First, bring the x to the numerator (top) as x^(-3). Then use the chain rule: State the first times derivative of the second plus state the second times the derivative of the first.State sin(x), then multiply by the derivative of x^(-3) which we get by bringing the power of -3 down and then subtracting one from the power. Gives us sin(x)*(-3x^(-4)).Then state x^(-3) and multiply by the derivative of sin(x), which we know is cos(x). Gives us x^(-3)*cos(x).Adding the two terms together gives us the final answer of: -3x^(-4)*sin(x)+x^(-3)*cos(x).Could move the negative powers if necessary for question.

Answered by Tutor170145 D. Maths tutor

5890 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Factorise x^3+3x^2-x-3


How do you find the coordinate of where two lines intersect?


The velocity of a moving body is given by an equation v = 30 - 6t, where v - velocity in m/s, t - time in s. A) What is the acceleration a in m/s^2? B) Find the expression for the displacement s in terms of t given the initial displacement s(0)=10 m.


f(x)= 2x^3 -7x^2 + 2x +3. Given that (x-3) is a factor of f(x), express f(x) in a fully factorised form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences