Find the derivative of sin(x)/x^3 with respect to x

First, bring the x to the numerator (top) as x^(-3). Then use the chain rule: State the first times derivative of the second plus state the second times the derivative of the first.State sin(x), then multiply by the derivative of x^(-3) which we get by bringing the power of -3 down and then subtracting one from the power. Gives us sin(x)*(-3x^(-4)).Then state x^(-3) and multiply by the derivative of sin(x), which we know is cos(x). Gives us x^(-3)*cos(x).Adding the two terms together gives us the final answer of: -3x^(-4)*sin(x)+x^(-3)*cos(x).Could move the negative powers if necessary for question.

Answered by Tutor170145 D. Maths tutor

5573 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) Express 4(cosec^2(2x)) - (cosec^2(x)) in terms of sin(x) and cos (x) and hence b) show that 4(cosec^2(2x)) - (cosec^2(x)) = sec^2(x)


given y = x^2 - 7x + 5, find dy/dx from first principles


What is the product rule in differentiation?


Points P and Q are situated at coordinates (5,2) and (-7,8) respectively. Find a) The coordinates of the midpoint M of the line PQ [2 marks] b) The equation of the normal of the line PQ passing through the midpoint M [3 marks]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences