Find the derivative of sin(x)/x^3 with respect to x

First, bring the x to the numerator (top) as x^(-3). Then use the chain rule: State the first times derivative of the second plus state the second times the derivative of the first.State sin(x), then multiply by the derivative of x^(-3) which we get by bringing the power of -3 down and then subtracting one from the power. Gives us sin(x)*(-3x^(-4)).Then state x^(-3) and multiply by the derivative of sin(x), which we know is cos(x). Gives us x^(-3)*cos(x).Adding the two terms together gives us the final answer of: -3x^(-4)*sin(x)+x^(-3)*cos(x).Could move the negative powers if necessary for question.

TD
Answered by Tutor170145 D. Maths tutor

6429 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you prove two straight lines intersect?


Find the turning point of the line y = x^2 + 2x -1


Solve for 0<=θ<π, the equation sin3θ-(sqrt3)cosθ=0 (C2)


Write down the coordinates of the centre and the radius of the circle with equation x^2+y^2-4x-8y+11=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning