Solve the following simultaneous equations: x^2 + 2y = 9, and y = x + 3.

Label the two equations as the following: x2 + 2y = 9 y = x + 3 Equation 2 can be substituted into equation 1, giving: x2 + 2( x + 3 ) = 9Expanding the brackets and subtracting 9 from both sides means equation 1 becomes x2 + 2x - 3 = 0Then we can factorise this to create (x + 3)(x - 1) = 0Which means x = -3, and x = 1.
Substituting these values into equation 2 gives usy = 0 and y = 4, respectively.So the solutions are (-3, 0) and (1, 4).

Answered by Ximena B. Maths tutor

3844 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise the Quadratic: 3x^2 + 2x - 1.


There are n sweets in a bag, 6 of which are orange. If the probablility of eating 2 orange sweets from the bag, one after the other, is 1/3, show that n^2 - n - 90 = 0. State any assumptions made.


Using your knowledge that tan(x) = sin(x) / cos(x) , how would you write 4/7tan(x)


Expand these Brackets


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences