Answers>Maths>IB>Article

How to prove that Integral S 1/(a^2+x^2) dx= 1/a arctan(x/a) + C ?

In order to answer this question, at first we need to use the method of substitution. That means, we're trying to replace x with a different variable u. Lets use the substitution of x = a tan u, then du/dx = a (sec u)^2. From that we can substitute both x and dx with the new variable u. As such S 1/(a^2 +x^2) dx becomes S 1/(a^2 + (a tan u)^2 * a (sec u)^2 du, or S a (sec u)^2/ a^2 (1 +(tan u)^2 ) du. Using tigonometric identities, we can simplify 1+(tan u)^2 to (sec u)^2 obtaining S (1/a) * (sec u)^2/ (sec u)^2 du = 1/a S 1 du. That would be equal to 1/a * u +c.Last part of the question is how to find u. Since we know that x = a tan u, we also know that x/a = tan u, that means that for arctan (tan u) = arctan (x/a) and thus, u = arctan (x/a). Therefore the S 1/(a^2 +x^2) dx = 1/a * u +c =(1/a) arctan (x/a) +C

Answered by Judyta W. Maths tutor

4316 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

All tickets for a concert are the same price. Amy and Dan pay £63 for some tickets. Amy pays £24.50 for 7 tickets. How many tickets does Dan buy?


Factorise z^3+1 into a linear and quadratic factor. Let y=(1+i√3)/2. Show that y is a cube root of -1. Show that y^2=y-1. Find the value of (1-y)^6.


Given two functions f and g where f(x)=3x-5 and g(x)=x-2. Find: a) the inverse f^-1(x), b) given g^-1(x)=x+2, find (g^-1 o f)(x), c) given also that (f^-1 o g)(x)=(x+3)/3, solve (f^-1 o g)(x)=(g^-1 o f)(x)


Solve the equation sec^2(x) - 4tan(x)= -3 , 0 ≤x≤ 2π


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences