In a titration, 45.0 cm^(3) of 0.100 mol dm^(-3) sodium hydroxide solution is exactly neutralised by 40.0 cm^(3) of a dilute hydrochloric acid solution. Calculate the concentration of the hydrochloric acid solution in mol dm^(-3).

First of all, summarise everything that you know in a table or in brief notes:NaOH, 45 cm^(3), 0.1 mol dm^(-3)HCl, 40 cm^(3)The first thing that you need to do is to find the number of moles of NaOH. This is done by using the relationship of number of moles = concentration x volume.n(NaOH) = (45/1000) x 0.1 (divided by 1000 to convert from cm^3 to dm^3)n(NaOH) = 0.045 x 0.1 = 0.0045 molThe second step is to work out the reacting ratios of NaOH and HCl. This is done from the balanced equation, which in this case is NaOH(aq) + HCl(aq) --> NaCl(aq) + H2O(aq)This shows a ratio of 1:1 which means that 0.0045 mol of NaOH will react with 0.0045 mol of HCl.The final step is to then use the relationship of number of moles = concentration x volume rearranged to calculate the concentration of the HCl solution. number of moles / volume = concentration0.0045 / (40/1000) = 0.0045 / 0.04 = 0.1125 mol dm^(-3)This figure needs to then be rounded to three significant figures, so the answer is 0.113 mol dm^(-3).

LJ
Answered by Lauren J. Chemistry tutor

4662 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

A titration is carried out and 0.04dm^3 of sulphuric acid neutralises 0.08dm^3 sodium hydroxide of concentration 1mol/dm^3. Calculate the concentration of the sulphuric acid.


Describe and explain how changes in the earth atmosphere, from the Precambrian Era (where the earth as occupied by volcanoes), have changed to form the surface of the Earth today and its atmosphere.


In an analysis of copper sulfide, 12.7g of copper was found to be combined with 3.2 g of sulfur. Calculate the empirical formula.


The mass of a balloon is 0.02g before it is filled with air. After it is blown up with air the mass is 0.04g. Assuming oxygen makes up 21% of air, calculate the number of moles of oxygen in the balloon.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences