What is the minimum height of a hill, so a ball of mass m falling from it can go through a loop of radius R?

There is only one requirement for the ball to go through the loop. Its energy must be such that the centrifugal force experienced by the ball when it is at the peak of the loop is greater than gravity pulling down. If this is written down:Centripetal force = m v^2/R > mg , Therefore v > (gR)1/2And as always, energy must be conserved, so the kinetic+potential energy at the peak of the loop must be the same as the potential energy on top of the hill (as the ball is initially stopped). Therefore, if the height of the hill is H,mgH = mg2R+1/2mv^2 > mg2R+1/2 mgRH > 5/2 RThe height of the hill must be at least 2.5 times greater than the radius of the loop.

GP
Answered by Gabriel P. Physics tutor

3113 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

With the help of a suitably labelled graph, explain what is meant by resonance of a mechanical system.


what is the centripetal force?


A coil is connected to an analogue centre zero ammeter. A magnet is dropped (North pole first) so that it falls vertically and completely through the coil. What would be observe on the ammeter?


A wire has length l, cross-sectional area a, resistivity p and resistance R. It is compressed to a third of its original length but its volume and resistivity are constant. Show its new resistance is R/9.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning