What is the minimum height of a hill, so a ball of mass m falling from it can go through a loop of radius R?

There is only one requirement for the ball to go through the loop. Its energy must be such that the centrifugal force experienced by the ball when it is at the peak of the loop is greater than gravity pulling down. If this is written down:Centripetal force = m v^2/R > mg , Therefore v > (gR)1/2And as always, energy must be conserved, so the kinetic+potential energy at the peak of the loop must be the same as the potential energy on top of the hill (as the ball is initially stopped). Therefore, if the height of the hill is H,mgH = mg2R+1/2mv^2 > mg2R+1/2 mgRH > 5/2 RThe height of the hill must be at least 2.5 times greater than the radius of the loop.

Answered by Gabriel P. Physics tutor

2274 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do I convert between eV and J


A Positron has the same mass, but opposite charge to an electron. A Positron and electron are orbiting around each other separated by 1μm, in a stable circular orbit about their centre of mass, as a result of electrostatic attraction. Calculate the period


What is the derivative of distance with respect to time.


During take-off from earth, an astronaut of mass 76kg has an area of contact with his seat of 0.095m^2. Calculate the average pressure on the seat when the upward acceleration of the rocket is 47ms^-2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences