What is the minimum height of a hill, so a ball of mass m falling from it can go through a loop of radius R?

There is only one requirement for the ball to go through the loop. Its energy must be such that the centrifugal force experienced by the ball when it is at the peak of the loop is greater than gravity pulling down. If this is written down:Centripetal force = m v^2/R > mg , Therefore v > (gR)1/2And as always, energy must be conserved, so the kinetic+potential energy at the peak of the loop must be the same as the potential energy on top of the hill (as the ball is initially stopped). Therefore, if the height of the hill is H,mgH = mg2R+1/2mv^2 > mg2R+1/2 mgRH > 5/2 RThe height of the hill must be at least 2.5 times greater than the radius of the loop.

GP
Answered by Gabriel P. Physics tutor

3034 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball is thrown in the air with velocity of 50.0 m/s, assuming no air resistance calculate its maximum height.


Imagine a ball rolls off a set of stairs with horizontal velocity, u; the stairs have a height, h and length of l. Find a formula for which step the ball will hit, n.


An electron is traveling at a velocity of 500m/s perpendicular to a uniform magnetic field. A force of magnitude 4.32 x10^(-16) N is acting on the electron, what is the magnetic flux density of the field?


An alpha particle is accelerated with 5MeV of kinetic energy towards the nucleus of a gold atom with atomic number 79. What is the distance of closest approach that is reached by the alpha particle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning