What is the minimum height of a hill, so a ball of mass m falling from it can go through a loop of radius R?

There is only one requirement for the ball to go through the loop. Its energy must be such that the centrifugal force experienced by the ball when it is at the peak of the loop is greater than gravity pulling down. If this is written down:Centripetal force = m v^2/R > mg , Therefore v > (gR)1/2And as always, energy must be conserved, so the kinetic+potential energy at the peak of the loop must be the same as the potential energy on top of the hill (as the ball is initially stopped). Therefore, if the height of the hill is H,mgH = mg2R+1/2mv^2 > mg2R+1/2 mgRH > 5/2 RThe height of the hill must be at least 2.5 times greater than the radius of the loop.

GP
Answered by Gabriel P. Physics tutor

3179 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is a moment?


What Newton’s third law of motion?


People A and B are taking a lift of mass 500 kg which has constant acceleration and the force from the rope that pulls it is 7500 N. The scales where the people stand show a reading of 720 N and 500 N.


A nail of mass 7.0g is held horizontally and is hit by a hammer of mass 0.25kg moving at 10ms^-1. The hammer remains in contact with the nail during and after the blow. (a) What is the velocity of the hammer and nail after contact?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning