What is the minimum height of a hill, so a ball of mass m falling from it can go through a loop of radius R?

There is only one requirement for the ball to go through the loop. Its energy must be such that the centrifugal force experienced by the ball when it is at the peak of the loop is greater than gravity pulling down. If this is written down:Centripetal force = m v^2/R > mg , Therefore v > (gR)1/2And as always, energy must be conserved, so the kinetic+potential energy at the peak of the loop must be the same as the potential energy on top of the hill (as the ball is initially stopped). Therefore, if the height of the hill is H,mgH = mg2R+1/2mv^2 > mg2R+1/2 mgRH > 5/2 RThe height of the hill must be at least 2.5 times greater than the radius of the loop.

GP
Answered by Gabriel P. Physics tutor

2714 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The radius of the Earth is 6,400km and has a mass of 6x10^24kg. Calculate the minimum velocity needed by a projectile, fired from the surface of the Earth in order to escape the Earths gravity.


Why is an object that moves in a circular path accelerating when it has constant speed?


Describe and explain how a constant rate of fission is maintained in a reactor by considering what events or sequence of events may happen to the released neutrons. (6 marks)


Explain what is meant by tensile stress and tensile strain.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences