What is the minimum height of a hill, so a ball of mass m falling from it can go through a loop of radius R?

There is only one requirement for the ball to go through the loop. Its energy must be such that the centrifugal force experienced by the ball when it is at the peak of the loop is greater than gravity pulling down. If this is written down:Centripetal force = m v^2/R > mg , Therefore v > (gR)1/2And as always, energy must be conserved, so the kinetic+potential energy at the peak of the loop must be the same as the potential energy on top of the hill (as the ball is initially stopped). Therefore, if the height of the hill is H,mgH = mg2R+1/2mv^2 > mg2R+1/2 mgRH > 5/2 RThe height of the hill must be at least 2.5 times greater than the radius of the loop.

GP
Answered by Gabriel P. Physics tutor

2937 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How would we calculate the distance covered by a train that starts at rest, then accelerates to 5km/hr in 30 mins then stays at this constant speed for 12 minutes?


Describe and explain the photoelectric effect (6 marks)


A box initially at rest is on a plank, of length 5m, that is elevated at an angle such that tan(a)=3/4. When it reaches the end of the plank it has velocity 5ms^-1. Calculate the average frictional force on the box.


Particle A (60kg) moves right at 50m/s. It collides with particle B (250kg) moving left at 10m/s. If after the collision particle A moves left at 20m/s, calculate the final velocity of particle B


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning