Solve:

x2 + y2 = 25 y – 3x = 13 Rearrange the second equation: y = 13 + 3x Substitute the rearranged question in the first equation: x2 + (13 + 3x)2 = 25 Solve: x2 + 169 + 9x2 + 78x - 25 = 0 10x2 + 78x + 144 = 0 5x2 + 39x + 72 = 0 x = (-39 +- /1521-1440)/10 x = (-39 +-9)/10 x = -4.8, x = -3 Subsitute these two values in the rearranged equation: x = -4.8 --> y = 13 + 3*(-4.8) = -1.4 x = -3 --> y = 13 + 3*(-3) = 4

Answered by Bandana J. Maths tutor

2572 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I solve sequences and how can I get the nth number?


Work out the value of 4a + 2b when a = 4 and b = 3.


A cuboid of height 5 cm has a base of side 'a' cm. The longest diagonal of the cuboid is 'L' cm. Show that 'a' = SQRT[ (L^2 - 25)/2]


Expand and simplify (x+2)(x+3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences