y=20x-x^2-2x^3. Curve has a stationary point at the point M where x=-2. Find the x coordinate of the other stationary point of the curve and the value of the second derivative of both of these point, hence determining their nature.

Differentiate to get dy/dx=20-2x-6x^2Then stationary points occur when dy/dx = 0 so 0 = 20-2x-6x^2 Factorise to get x= -2, x=5/3Differentiate dy/dx to get second derivative = -2-12x at x=5/3 is -22 so max pointat x=-2 second derivative is 24>0 so min point.

Answered by Emily J. Maths tutor

3206 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Suppose that you go to a party where everyone knows at least one other person, you get a bit bored and wonder whether there are at least two people which know the same number of people there.


Given that: 2tanθsinθ = 4 - 3cosθ , show that: 0 = cos²θ - 4cosθ + 2 .


Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


Integrate, by parts, y=xln(x),


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences