Using a Suitable substitution or otherwise, find the differential of y= arctan(sinxcosx), in terms of y and x.

First of all, replace sinxcosx with 1/2 sin2x. Then you should let U=1/2 Sin2x and replace that in the formula. If y=arctan(U), then U=tany. work out dU/dy which is Sec2y. Using the trigonometric identity sin2y + cos2y= 1, sec2y= 1+tan2y. The differential now becomes 1+U2. Flip the equation around to give dy/dU = 1/(1+U2).to get the differential in terms of y and x first replace U2 with 1/4 sin22x. using chain rule, dy/dx=dy/du * du/dx. du/dx = cos2x, so combining the two equations dy/dx = cos2x/(1 + 1/4 sin2x) which can be simplified to dy/dx = 4cos2x/(4 + sin22x)

JP
Answered by James P. Further Mathematics tutor

2586 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


For f(x) = (3x+4)^(-2), find f'(x) and f''(x) and hence write down the Maclaurin series up to and including the term in x^2.


A mass m=1kg, initially at rest and with x=10mm, is connected to a damper with stiffness k=24N/mm and damping constant c=0.2Ns/mm. Given that the differential equation of the system is given by d^2x/dt^2+(dx/dt *c/m)+kx/m=0, find the particular solution.


A child weighing 50kg is pushed down a 2m long slide (u=0.1), angled at 45 degrees from the horizontal, at 5m/s. At what speed does the child reach the bottom of the slide?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning