show y=3x-5 is tangent to x^2 + y^2 +2x -4y - 5 = 0 and the point where they touch

y=3x-5x^2 + (3x-5)^2 + 2x - 4(3x-5) - 5 = 0x^2 + 9x^2 -30x +25 + 2x -12x + 20 - 5 = 010x^2 -40x + 40 = 010 (x^2 - 4x +4) = 010(x - 2)^2 = 0x=2implies one point of contact, therefore tangenty = 3x - 5y = 6 -5 = 1

Answered by Robert M. Maths tutor

2077 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

A circle has equation x^2+y^2+6x+10y-7=0. Find the equation of the tangent line through the point on the circle (-8,-1).


Given x^3 + 4x^2 + x - 6 = 0 , and one of the factors of this equation is (x-1), factorise and hence compute the other solutions for the eqaution.


Find an equation for the straight line AB , giving your answer in the form px+qy=r, where p, q and r are integers. Given that A has co-ordinates (-2,4) and B has co-ordinates (8,-6)


The equation x^2 + (k-5)x + 1 = 0 has equal roots. Determine the possible values of k.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences