What is the equation of the tangent to the curve y=x^3+3x^2+2 when x=2

dy/dx=3x^2+6xx=2m=3(2)^2+6(2)=24at x=2 y=22(2,22)y-22=24(x-2)y-22=24x-48y=24x-26

Answered by Kieran H. Maths tutor

3472 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 16x + x^-1, find the two values of x for which dy/dx = 0


give the coordinates of the stationary points of the curve y = x^4 - 4x^3 + 27 and state with reason if they are minumum, maximum, or points of inflection.


Find the equation of the tangent to the curve y = 2 ln(2e - x) at the point on the curve where x = e.


Work out the equation of the normal to the curve y = x^3 + 2x^2 - 5 at the point where x = -2. [5 marks]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences