Express 2(x-1)/(x^2-2x-3) - 1/(x-3) as a fraction in its simplest form.

The answer is 1/(x+1)I began by factorising the denominator of the first fraction:2(x-1)/(x^2-2x-3) - 1/(x-3) = 2(x-1)/(x-3)(x+1) - 1/(x-3) Next, I multiplied both the numerator and the denominator of the second fraction by (x+1) to get a common denominator:2(x-1)/(x-3)(x+1) - 1/(x-3) = 2(x-1)/(x-3)(x+1) - (x+1)/(x-3)(x+1) With this common denominator, I could then expand the brackets on the numerators and add/subtract accordingly:2(x-1)/(x-3)(x+1) - (x+1)/(x-3)(x+1) = (2x-2-x-1)/(x-3)(x+1) = (x-3)/(x-3)(x+1) The last step I did was dividing the common factor of (x-3) from the numerator and denominator to give:(x-3)/(x-3)(x+1) = 1/(x+1)

DR
Answered by Devan R. Maths tutor

7989 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate Sin(2X)


The equation of a line is y=3x – x^3 a) Find the coordinates of the stationary points in this curve, stating whether they are maximum or minimum points b) Find the gradient of a tangent to that curve at the point (2,4)


Find the inverse of y = (5x-4) / (2x+3)


A rollercoaster stops at a point with GPE of 10kJ and then travels down a frictionless slope reaching a speed of 10 m/s at ground level. After this, what length of horizontal track (friction coefficient = 0.5) is needed to bring the rollercoaster to rest?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences