Express 2(x-1)/(x^2-2x-3) - 1/(x-3) as a fraction in its simplest form.

The answer is 1/(x+1)I began by factorising the denominator of the first fraction:2(x-1)/(x^2-2x-3) - 1/(x-3) = 2(x-1)/(x-3)(x+1) - 1/(x-3) Next, I multiplied both the numerator and the denominator of the second fraction by (x+1) to get a common denominator:2(x-1)/(x-3)(x+1) - 1/(x-3) = 2(x-1)/(x-3)(x+1) - (x+1)/(x-3)(x+1) With this common denominator, I could then expand the brackets on the numerators and add/subtract accordingly:2(x-1)/(x-3)(x+1) - (x+1)/(x-3)(x+1) = (2x-2-x-1)/(x-3)(x+1) = (x-3)/(x-3)(x+1) The last step I did was dividing the common factor of (x-3) from the numerator and denominator to give:(x-3)/(x-3)(x+1) = 1/(x+1)

DR
Answered by Devan R. Maths tutor

8763 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y=x^3 + 4x^2 - 2x - 3 where x = -4


Use integration by parts to integrate ∫ xlnx dx


Find the binomial expansion of ((x^2) − 5)^3


Solve ln(2x-3) = 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning