Express 2(x-1)/(x^2-2x-3) - 1/(x-3) as a fraction in its simplest form.

The answer is 1/(x+1)I began by factorising the denominator of the first fraction:2(x-1)/(x^2-2x-3) - 1/(x-3) = 2(x-1)/(x-3)(x+1) - 1/(x-3) Next, I multiplied both the numerator and the denominator of the second fraction by (x+1) to get a common denominator:2(x-1)/(x-3)(x+1) - 1/(x-3) = 2(x-1)/(x-3)(x+1) - (x+1)/(x-3)(x+1) With this common denominator, I could then expand the brackets on the numerators and add/subtract accordingly:2(x-1)/(x-3)(x+1) - (x+1)/(x-3)(x+1) = (2x-2-x-1)/(x-3)(x+1) = (x-3)/(x-3)(x+1) The last step I did was dividing the common factor of (x-3) from the numerator and denominator to give:(x-3)/(x-3)(x+1) = 1/(x+1)

Answered by Devan R. Maths tutor

7977 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.


What actually are sin, cos and tan?


If cos(x)= 1/3 and x is acute, then find tan(x).


How do I remember the coefficients of a Taylor expansion?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences