A myelinated axon conducts impulses faster than a non-myelinated axon. Explain this difference:

A myelinated neurone is insulated by a layer of Schwann cells that make up the myelin sheath. This aids in the faster conduction of an action potential down the neuronal axon. Depolarisation of the axon can only occur at regions of the axon that are not myelinated (i.e. are not surrounded by Schwann cells), these regions are called the Nodes of Ranvier. Therefore, in myelinated neurones, the nerve impulse is said to jump from node - to - node, a impulse pathway known as Saltatory Conduction. This means that the action potential does not have to travel along the whole length of the myelinated axon. This translates to an increased speed in the transmission of the nerve impulse across an entire myelinated axon compared to along a non-myelinated axon.

Answered by Hanna P. Biology tutor

16316 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

Give 3 ways in which the properties of ATP make it a suitable source of energy in biological processes.


Explain how the sinoatrial node (SAN) ensures that oxygenated blood enters the aorta.


Why would a cell lyse when it's in water?


During large heart attacks the chordae tendineae can be damaged. Use your knowledge of the heart’s structure and the diagram below to to explain how damage to these structures may lead to backflow of blood from the right ventricle to the right atrium.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences