A myelinated axon conducts impulses faster than a non-myelinated axon. Explain this difference:

A myelinated neurone is insulated by a layer of Schwann cells that make up the myelin sheath. This aids in the faster conduction of an action potential down the neuronal axon. Depolarisation of the axon can only occur at regions of the axon that are not myelinated (i.e. are not surrounded by Schwann cells), these regions are called the Nodes of Ranvier. Therefore, in myelinated neurones, the nerve impulse is said to jump from node - to - node, a impulse pathway known as Saltatory Conduction. This means that the action potential does not have to travel along the whole length of the myelinated axon. This translates to an increased speed in the transmission of the nerve impulse across an entire myelinated axon compared to along a non-myelinated axon.

HP
Answered by Hanna P. Biology tutor

20596 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

how is an ation potential generated?


Explain how the intensive rearing of domestic livestock increases net productivity


Explain pieces of evidence that support the theory that mitochondria evolved from bacteria?


Describe the structure of proteins


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning