Given that (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2) = 7, show that tan(x)^2 = 3/2

First, we use 1 - sin(x)^2 = cos(x)^2 and get:(LHS) (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2)= (cos(x)^2 + 4 sin(x)^2)/cos(x)^2= 1 + 4 (sin(x)/cos(x))^2= 1 + 4 tan(x)^2Now we know that the left hand side is equal to 7.Hence, 1 + 4 tan(x)^2 = 7 <=> tan(x)^2 = 3/2

Answered by Bogdan-Adrian M. Maths tutor

6753 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=(x^2+5)^7


How do you prove by contradiction the irrationality of surds. Use sqrt 2 as an example.


Prove the identity: (cos θ + sin θ)/(cosθ-sinθ) ≡ sec 2θ + tan 2θ


Express 1/(x(1-3x)) in partial fractions.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences