Given that (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2) = 7, show that tan(x)^2 = 3/2

First, we use 1 - sin(x)^2 = cos(x)^2 and get:(LHS) (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2)= (cos(x)^2 + 4 sin(x)^2)/cos(x)^2= 1 + 4 (sin(x)/cos(x))^2= 1 + 4 tan(x)^2Now we know that the left hand side is equal to 7.Hence, 1 + 4 tan(x)^2 = 7 <=> tan(x)^2 = 3/2

BM
Answered by Bogdan-Adrian M. Maths tutor

6803 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate tan (x) with respect to x.


Integrate ln(e^x)


When you are working out dy/dx = 0, why do you do this and what does it mean?


A 10 kilogram block slides down a 30 degree inclined slope, the slope has a coefficient of friction of 0.2. Calculcate the blocks acceleration down the slope.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences