Given that (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2) = 7, show that tan(x)^2 = 3/2

First, we use 1 - sin(x)^2 = cos(x)^2 and get:(LHS) (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2)= (cos(x)^2 + 4 sin(x)^2)/cos(x)^2= 1 + 4 (sin(x)/cos(x))^2= 1 + 4 tan(x)^2Now we know that the left hand side is equal to 7.Hence, 1 + 4 tan(x)^2 = 7 <=> tan(x)^2 = 3/2

Answered by Bogdan-Adrian M. Maths tutor

6281 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that cos(x) = 1/4, what is cos(2x)?


Integrate f(x): f(x) = (3x +2) / (x^2 - 5x +6)


The lines y = 3x² - x + 5/2 intersects the line y = x/2 +7 at two points. Give their coordinates. Show your working


Q4 on 2017 Edexcel C4 paper, concerns differentiation of multiple variables.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences