Explain how integration via substitution works.

The function in terms of x should be broken down into two easier to integrate functions, like so f(x) = g(h(x)). if we say that u=h(x) is our substitution then we can integrate in terms of u now, however the dx term must also be written in terms of u. for this, differentiate u with respect to x using the function h(x) giving du/dx. now du and dx can be split up and dx can be substituted into the integral in terms of u and du. This can also be done with boundary conditions at the top and bottom of the sigma but it is not necessary as they can be put in when u is converted back in terms of x after the integration.
now the integral with respect to u can be performed. once this is done x can be substituted back in using the relation u=h(x). (this explanation would be aided with a step by step example).

DF
Answered by Daniel F. Maths tutor

3345 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u = 2^x to find the exact value of ⌠(2^x)/(2^x +1)^2 dx between 1 and 0.


How do you find the coordinate of where two lines intersect?


Simplify the following C4 question into it's simplest form: (x^4-4x^3+9x^2-17x+12)/(x^3-4x^2+4x)


How do I solve quadratic equation by completing the square : X^2 - 4X = 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning