integrate (2x)/(x^2+1) dx with limits 1, 0

Firstly we notice that the numerator is the derivative of the denominator so we can use integration by subsitution method. Setting u=x^(2)+1. We can differentiate this to get du/dx=2x Subbing in dx=du/2x . This cancels out the 2x in the function we are trying to integrate. We are left with the integral of 1/u du. However we must not forget to change the limits as they as with respect to x and not u. We can sub in the limits into u=x^2+1. When x=1, u=(1)^2+1 = 2When x = 0, u=(0)^2+1 = 1Therefor our new limits are 2,1 If we integrate 1/u du with limits 2,1 we get ln(u) + c (this is a standard rule) Subbing in the limits we get: ln(2) - ln(1) = 0.693147...We have worked out the area under the curve f(x)=(2x)/(x^2+1) between x=1 and x=0

Answered by Tanya J. Maths tutor

3406 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A fair die has six faces numbered 1, 1, 1, 2, 2, and 3. The die is rolled twice and the number showing on the uppermost face is recorded. Find the probability that the sum of the two numbers is at least three.


How do you differentiate y=x^x?


Find the roots of this equation: y=(8-x)lnx


complete the square of x^2 + 2x - 6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences