integrate (2x)/(x^2+1) dx with limits 1, 0

Firstly we notice that the numerator is the derivative of the denominator so we can use integration by subsitution method. Setting u=x^(2)+1. We can differentiate this to get du/dx=2x Subbing in dx=du/2x . This cancels out the 2x in the function we are trying to integrate. We are left with the integral of 1/u du. However we must not forget to change the limits as they as with respect to x and not u. We can sub in the limits into u=x^2+1. When x=1, u=(1)^2+1 = 2When x = 0, u=(0)^2+1 = 1Therefor our new limits are 2,1 If we integrate 1/u du with limits 2,1 we get ln(u) + c (this is a standard rule) Subbing in the limits we get: ln(2) - ln(1) = 0.693147...We have worked out the area under the curve f(x)=(2x)/(x^2+1) between x=1 and x=0

TJ
Answered by Tanya J. Maths tutor

3722 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that d/dx(cosx)=-sinx show that d/dx(secx)=secx(tanx)


find the derivative of f(x) = x^3 + 2x^2 - 5x - 6. Find all stationary points of the function.


On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


3/5 of a number is 162. Work out the number.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences