Solve the simultaneous equations: x^2+y^2=36 ; x=2y+6

Substitute x in terms of y into the first equation:

(2y+6)2+y2=36

Use FOIL to expand the brackets

4y2+24y+36+y2=36  =>   5y2+24y=0

y(5y+24)=0  =>  y=0   or    y=(-24)/5

Substitute these values of y into the second equation to find x

when y=0, x=2*0+6  =>  x=6

when y=(-24)/5,  x=2*(-24)/5+6  =>  x=-3.6

Answered by Daniel B. Maths tutor

30086 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Given the function f(x) = 2x^(2) + 3, find the value of x when f(x) = 53.


Solve these simultaneous equations: y=3x-10; y=2x+5


Solve the equation (2x+3)/(x-4)-(2x-8)/(2x+1)=1 and give the answer to 2 decimal places


solve the Simultaneous equations: y= x+6 and y=2x^23


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences