What is the integral of x sin(x) dx?

Find the following integral: ∫ x sin(x) dx

This question is a good candidate for the integration by parts method, as it is the product of two different 'parts'.

Step 1) Recall that if you have an integral of the form:
∫ u(dv/dx) dx

Then it can be written as:
uv – ∫ v(du/dx) dx

We need to decide which part we will differentiate (as in, which part is u), and which part we will integrate (as in, which part is dv/dx).

Step 2) We can note that continuously differentiating sin(x) results in a loop of cos(x), –sin(x), –cos(x), sin(x)..., whereas differentiating x once gives 1. From this, it seems to make sense that we would want to differentiate the x part (so u is x) and therefore integrate the sin(x) part (so dv/dx is sin(x)).

So, let:
u = x, which implies du/dx = 1

And let:
dv/dx = sin(x). Integrating this to get v gives v = –cos(x)

Step 3) So, our integral is now of the form required for integration by parts.
∫ x sin(x) dx 
= ∫ u(dv/dx) dx
= uv –  ∫ v(du/dx) dx
= –x cos(x) – ∫ –cos(x)*1 dx
= –x cos(x) – ∫ –cos(x) dx
= –x cos(x) + ∫ cos(x) dx

The integral of cos(x) is equal to sin(x). We can check this by differentiating sin(x), which does indeed give cos(x).

Step 4) Finally, as with all integration without limits, there must be a constant added, which I'll call c. So the final answer is:

∫ x sin(x) dx = –x cos(x) + sin(x) + c

Answered by Shaun F. Maths tutor

322362 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: y-2x-4=0, 4x^2+y^2+20x=0


A rollercoaster stops at a point with GPE of 10kJ and then travels down a frictionless slope reaching a speed of 10 m/s at ground level. After this, what length of horizontal track (friction coefficient = 0.5) is needed to bring the rollercoaster to rest?


Find the derivative of sinx, use that to find the derivative of xsinx


How do you differentiate 2 to the power x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences