Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.

Differentiate the equationdy/dx=6x+2x(dy/dx)+2y-4y(dy/dx)Set this equal to zero and solve for dy/dx which gives:dy/dx=(2y+6x)/(4y-2x)For x=2 and y=4 dy/dx=5/3(y-yo)=m(x-xo)y-4=(5/3)(x-2)Thus, the equation of the tangent at (2,4) is 5x-3y+2=0

Answered by Vasileios D. Maths tutor

4711 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find all solutions to the equation 8sin^2(theta) - 4 = 0 in the interval 2(pi) < (theta) < 4(pi)


I don't fully understand the purpose of integration. Could you please explain it to me?


Find the integral of xcos(2x) with respect to x


Given that y = 16x + x^(-1), find the two values of x for which dy/dx = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences