Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.

Differentiate the equationdy/dx=6x+2x(dy/dx)+2y-4y(dy/dx)Set this equal to zero and solve for dy/dx which gives:dy/dx=(2y+6x)/(4y-2x)For x=2 and y=4 dy/dx=5/3(y-yo)=m(x-xo)y-4=(5/3)(x-2)Thus, the equation of the tangent at (2,4) is 5x-3y+2=0

VD
Answered by Vasileios D. Maths tutor

5102 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation x^2 + 2xy – 3y^2 + 16 = 0. Find the coordinates of the points on the curve where dy/dx =0


How do you take the derivative of a^x ?


How do you show that two lines do, or do not intersect?


A circle with equation x^2+y^2-2x+8y-40=0. Find the circle centre and the radius


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning